Studi Pemanfaatan Big Data dalam Perumusan Kebijakan Publik pada Sektor Kesehatan
Published in SPECTA Journal of Technology 5(3):308-322, 2021
Sektor kesehatan Indonesia pada saat ini menghadapi kondisi triple burden yang memerlukan respons dalam bentuk kebijakan yang didasarkan pada bukti-bukti ilmiah yang dapat dipertanggungjawabkan. Oleh karena itu, adanya perkembangan teknologi yang menghadirkan big data dapat menjadi peluang pada sektor kesehatan untuk menghasilkan kebijakan yang efektif, dan efisien. Terlebih pada saat ini, penggunaan big data masih didominasi oleh sektor swasta. Maka dari itu, penelitian ini bertujuan untuk mengidentifikasi pemanfaatan big data dalam perumusan kebijakan publik pada sektor kesehatan.
Recommended citation: Hakim, D.N., Ramadan, F. and Cahyono, Y.I. (2021). "Studi Pemanfaatan Big Data dalam Perumusan Kebijakan Publik pada Sektor Kesehatan.", SPECTA Journal of Technology, 5(3), pp. 308–322. Available at: https://doi.org/10.35718/specta.v5i3.379
Download Paper
This module provides a comprehensive introduction to the principles and practices of spatial data science and geographic information systems. We will learn to leverage fundamental tools such as python and R effectively to collect, process, analysis, and visualize spatial data.
This module delves into the specialized management of spatial data within database systems. Students will explore the design, implementation, and optimization of spatial databases, learning to handle complex queries and large-scale geospatial datasets using Structured Query Language (SQL).
This module offers a foundational overview of statistical techniques and quantitative analysis used in various fields. Students will learn key concepts such as probability, hypothesis testing, association, and data visualization, applying these methods to interpret and analyze data.
It introduces us to the application of machine learning techniques in the analysis of spatial data. We will explore algorithms and models tailored for spatial systems, such as land cover classification, spatial pattern recognition, and predictive modeling using geospatial datasets.
This module provides an in-depth exploration of remote sensing technologies and their applications using Google Earth Engine. Students will learn to process and analyze satellite imagery, extract meaningful information, and monitor environmental changes over time in the planetary scale platform.
The module teaches us how to create compelling presentations and professional portfolios showcasing our spatial data projects. Participants will learn to use Xaringan for dynamic, interactive slide decks and GitHub Pages for hosting and sharing our work online.